Lysosomal dysfunction produces distinct alterations in synaptic alpha-amino-3-hydroxy-5-methylisoxazolepropionic acid and N-methyl-D-aspartate receptor currents in hippocampus.

نویسندگان

  • Patrick M Kanju
  • Kodeeswaran Parameshwaran
  • Thirumalini Vaithianathan
  • Catrina M Sims
  • Kevin Huggins
  • Jennifer Bendiske
  • Sophia Ryzhikov
  • Ben A Bahr
  • Vishnu Suppiramaniam
چکیده

The early processes that lead to synaptic dysfunction during aging are not clearly understood. Dysregulation of alpha-amino-3-hydroxy-5-methylisoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA) receptors may cause age-related cognitive decline. Using hippocampal slice cultures exhibiting lysosomal dysfunction, an early marker of brain aging that is linked to protein accumulation, we identified alterations to AMPA and NMDA receptor-mediated synaptic currents. The miniature and spontaneous excitatory postsynaptic currents that were examined after 3, 6, and 9 days of lysosomal disruption showed progressive changes in amplitude, frequency, and rise and decay kinetics. To investigate whether modifications in specific channel properties of single synaptic receptors contributed to changes in the amplitude and time course of synaptic currents, we examined the single channel properties of synaptic AMPA and NMDA receptors. The channel open probability and the mean open times showed decreases in both receptor populations, whereas the closed times were increased without any change in the channel conductance. The Western blot analysis revealed a progressive decline in synaptic markers including glutamate receptor subunits. These results indicate that lysosomal dysfunction leads to progressive functional perturbation of AMPA and NMDA receptors in this slice model of protein accumulation, suggesting that age-related cognitive decline could result from altered glutamate receptor function before reductions in synaptic density.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mutant presenilin 1 alters synaptic transmission in cultured hippocampal neurons.

Mutations in presenilins are the major cause of familial Alzheimer disease, but the precise pathogenic mechanism by which presenilin (PS) mutations cause synaptic dysfunction leading to memory loss and neurodegeneration remains unclear. Using autaptic hippocampal cultures from transgenic mice expressing human PS1 with the A246E mutation, we demonstrate that mutant PS1 significantly depressed th...

متن کامل

Effect of xenon on excitatory and inhibitory transmission in rat spinal ventral horn neurons.

BACKGROUND The minimum alveolar concentration is determined in the spinal cord rather than in the brain. Xenon inhibits glutamatergic excitatory synaptic transmission in the dorsal horn neurons. However, its actions in the ventral horn neurons have not been investigated. METHODS The effects of 50 or 75% xenon on excitatory and inhibitory synaptic transmission were examined in the spinal lamin...

متن کامل

Differential assembly of coexpressed glutamate receptor subunits in neurons of rat cerebral cortex.

In the rat, subunits of the glutamate receptor family fall into three pharmacologically distinct groups: alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid preferring receptors (Glu R1-4), kainate preferring receptors (Glu R5-7, KA 1, KA 2), and N-methyl-D-aspartate preferring receptors (NMDA R1, NMDA R2A-2D). In the present study, we demonstrate immunocytochemically that the majority of...

متن کامل

Postsynaptic injection of calcium-independent phospholipase A2 inhibitors selectively increases AMPA receptor-mediated synaptic transmission.

The calcium-independent form of phospholipase A2 (iPLA2), an enzyme known to generate arachidonic acid (AA), was recently identified as the predominant constitutive phospholipase in the hippocampus. The present study shows that the iPLA2 inhibitor bromoenol lactone, when introduced into hippocampal CA1 pyramidal cells through a patch pipette, generated a dose-dependent increase in the amplitude...

متن کامل

Deprivation-induced synaptic depression by distinct mechanisms in different layers of mouse visual cortex.

Long-term depression (LTD) induced by low-frequency synaptic stimulation (LFS) was originally introduced as a model to probe potential mechanisms of deprivation-induced synaptic depression in visual cortex. In hippocampus, LTD requires activation of postsynaptic NMDA receptors, PKA, and the clathrin-dependent endocytosis of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) recepto...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neuropathology and experimental neurology

دوره 66 9  شماره 

صفحات  -

تاریخ انتشار 2007